Regularity issues related to the asymptotic behavior of solutions of the Navier-Stokes equations

Ricardo M. S. Rosa
Instituto de Matemática
Universidade Federal do Rio de Janeiro
(IM-UFRJ)

WORKSHOP ON PARTIAL DIFFERENTIAL EQUATIONS
60th Birthday of Prof. Gustavo Perla Menzala
Petrópolis, Rio de Janeiro, Brazil
August 10, 2005
3D Navier-Stokes (for homogeneous incompressible fluids)

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p &= \nu \Delta \mathbf{u} + \mathbf{f}, \\
\nabla \cdot \mathbf{u} &= 0.
\end{align*}
\]

\(\mathbf{u} = (u_1, u_2, u_3) = \) velocity field,
\(\mathbf{x} = (x_1, x_2, x_3) = \) space variables,
\(t = \) time variable,
\(p = \) kinematic pressure,
\(\mathbf{f} = (f_1, f_2, f_3) = \) density of volume forces,
\(\nu = \) kinematic viscosity.
Known results

- Global (in time) existence of weak solutions not necessarily smooth or unique
- Local (in time) existence of smooth unique solutions not necessarily global
- A bit of regularity \((L^s(0,T;L^r(\Omega)^3), r > 3, \frac{2}{s} + \frac{3}{r} \leq 1)\) implies smooth unique solutions
- “Fractal” estimates for the singularity set (”\(\nabla \otimes u = \infty\)” in time, \(d_H(S_t) \leq 1/2\) (Hausdorff dimension), and in space-time, \(P_1(S_{e:t}) = 0\) (Hausdorff parabolic measure – ”time counts twice”)
- Global well-posedness is one of the US$1,000,000-prizes of the Clay Foundation.
Weak solutions

- Lack of uniqueness \Rightarrow cannot define semigroup in classical sense.

- Yet several dynamical system concepts may be adapted: attractors, bifurcations, invariant measures, etc.
New asymptotic regularity results

- If the weak-limit-set of a weak solution is made of continuous functions with values in H then the weak-limit-set is strongly attracting.

- Time-average stationary statistical solutions of the 3D NSE are partly carried by sets of smooth solutions.
Regular weak limit sets are strongly attracting

- Let $u \in C([0, \infty), H_w)$ be a global weak solution, where $H_w = \text{the space } H \text{ endowed with the weak topology},$ and $H = \text{the space of } L^2 \text{ divergence-free vector fields with appropriate boundary conditions}.$

- The weak-limit-set $\omega_w(u) = \{v_0; u(t_j) \rightharpoonup v_0, t_j \to \infty\}$ is nonempty, weakly compact, somehow invariant, and weakly attracts $u.$

- **Main result:** If $u(t_j + \cdot)$ converges weakly to $v(\cdot)$ and v is continuous from the left at $t = 0$ in $H,$ then the convergence is strong.

- Implies regular weak-limit-sets (fixed points, limit cycles, weak attractors, etc.) are strongly attracting.
Idea of the proof

- We know $u(t_j) \rightharpoonup v_0$ by the definition of $\omega_w(u)$.
- Thus, $|v_0| \leq \liminf_j |u(t_j)|$.
- Use the energy inequality to show $\limsup_j |u_j|^2 \leq |v_0|^2$.

\[
\frac{1}{2} |v_0|^2 = \lim_{\tau_k \to 0^-} \left\{ \frac{1}{2} |v(\tau_k)|^2 - \int_0^{\tau_k} (f, v(s)) \, ds \right\} \\
= \lim_{\tau_k \to 0^-} \lim_{j \to \infty} \left\{ \frac{1}{2} |u(t_j + \tau_k)|^2 - \int_0^{\tau_k} (f, u(t_j + s)) \, ds \right\} \\
\geq \limsup_{j \to \infty} \frac{1}{2} |u(t_j)|^2.
\]

- Then, $|u(t_j)| \to |v_0|$ and $u(t_j) \rightharpoonup v_0$, which implies the strong convergence $u(t_j) \to v_0$.

Asymptotic partial regularity for time averages

- Turbulent flows have well-defined statistical properties.
- Individual solutions are unpredictable but averages are well-behaved.
- Averages are associated with probability measures.
- Stationary turbulence is associated with probability measures called stationary statistical solutions, a generalization of the notion of invariant measure.
- Some stationary statistical solutions can be obtained as the (generalized) limit of time averages of individual solutions (akin to ergodic theory).
- Are these time-average stationary statistical solutions regular in the sense of being carried, or even supported, in sets more regular than H?
Turbulent flows: several length scales active, unpredictable, but well-behaved in a statistical sense.

Figure 1.3 Instantaneous and time averaged views of a jet in cross flow. The jet exits from the wall at left into a stream flowing from bottom to top (Su & Mungal, 1999).
Types of averages:

Time average: \(\bar{U}(x) \approx \frac{1}{T} \int_0^T u(t, x) \, dt \)

Ensemble average: \(\bar{U}(x) \approx \frac{1}{N} \sum_{n=1}^N u^{(n)}(t, x) \)

Space average: \(\bar{U}(x) \approx \frac{1}{N} \sum_{n=1}^N u(t, x + \ell^{(n)}) \)

Ergodic hypothesis made in the conventional theory of turbulence: The mean values are independent of the type of average considered.
Measures related to ensemble averages

- At each time t, there is a probability measure μ_t for the distribution of the velocity field of the flow.

- The statistical information is contained in μ_t. The generalized moments are

$$\langle \varphi(u) \rangle = \int_H \varphi(v) \, d\mu_t(v)$$

which contain, in particular, the classical moments

$$\varphi(u) = (u - \langle u \rangle)^k.$$

- Which are the relevant measures for the flow?

- Is there an equation for μ_t?
Evolution of the generalized moments

- For N flows

$$\frac{d}{dt} \langle \varphi(u(t)) \rangle = \frac{d}{dt} \frac{1}{N} \sum_{n=1}^{N} \varphi(u^{(n)}(t)) = \frac{1}{N} \sum_{n=1}^{N} \frac{d}{dt} \varphi(u^{(n)}(t))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \varphi'(u^{(n)}(t)) \circ \frac{d}{dt} u^{(n)}(t)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \varphi'(u^{(n)}(t))) \circ F(u^{(n)}(t))$$

$$= \frac{1}{N} \sum_{n=1}^{N} \langle F(u^{(n)}(t)), \varphi'(u^{(n)}(t))) \rangle_{V',V}.$$

- More generally, for a measure μ_t in H,

$$\frac{d}{dt} \int_{H} \varphi(v) \, d\mu_t(v) = \int_{H} (F(v), \varphi'(v)) \, d\mu_t(v)$$
The formulation

$$\frac{d}{dt} \int_{H} \varphi(v) \, d\mu_t(v) = \int_{H} (F(v), \varphi'(v)) \, d\mu_t(v)$$

avoids the explicit dependence on the individual solutions of the NSE, introducing the dummy variable v, with unknown μ_t.

This is a Liouville-type equation, called the statistical Navier-Stokes equations.

The term $F(u) = f - \nu Au - B(u, u)$ “lives” in the dual space V', so only moments with $\varphi'(v)$ in V a.e. can be considered.
Turbulence in statistical equilibrium in time

- A flow is in *statistical equilibrium* in time when the generalized moments are independent of t:

$$\int_{H} \varphi(u) \, d\mu_t(v) = \text{independent of } t.$$

- Ensemble averages of flows in statistical equilibrium in time lead to the notion of *stationary statistical solution* $\mu_t \equiv \mu$.

Stationary statistical solutions

Borel probability measure μ in H satisfying

- Finite mean kinetic energy: $\int_H |\mathbf{v}|^2 \, d\mu(\mathbf{v}) < \infty$;
- Finite mean enstrophy: $\int_H |\nabla \otimes \mathbf{v}|^2 \, d\mu(\mathbf{v}) < \infty$;
- Energy inequality

$$\int_{\{e_1 \leq \frac{1}{2} |\mathbf{v}|^2 < e_2\}} \{\nu \|\mathbf{v}\|^2 - (\mathbf{f}, \mathbf{v})\} \, d\mu(\mathbf{v}) \leq 0,$$

for all energy levels $0 \leq e_1 \leq e_2 \leq \infty$;

- Stationary statistical Navier-Stokes equations

$$\int_H (\mathbf{F}(\mathbf{v}), \Phi'(\mathbf{v})) \, d\mu(\mathbf{v}) = 0,$$

for all suitable test functions.
Stationary statistical solutions and time averages

- Let \(u = u(t), t \geq 0 \), be a weak solution and let \(\varphi \in C(H_w) \).

- Then \(\varphi(u(t)) \) is bounded in \(t \geq 0 \), just like
 \[
 (0, \infty) \ni T \mapsto \frac{1}{T} \int_0^T \varphi(u(t)) \, dt.
 \]

- A generalized limit defines a positive linear funcional on \(C(H_w) \), with \(H_w \) locally compact:
 \[
 \varphi \mapsto \lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(u(t)) \, dt.
 \]

- Kakutani-Riesz Representation Theorem: there exists a Borel measure \(\mu = \mu_u \) on \(H_w \) such that
 \[
 \lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(u(t)) \, dt = \int_H \varphi(v) \, d\mu_u(v).
 \]
Regularity of time-average statistical solutions

- Let \(u = u(t) \) be a weak solution and let \(\mu_u \) be the associated SSS:

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \varphi(u(t)) \, dt = \int_H \varphi(v) \, d\mu(v).
\]

- Let \(\omega_w(u) \) be the weak-limit-set of \(u \) in \(H \).
- Then \(\text{supp} \ (\mu_u) \subset \omega_w(u) \).
- \(\mu_u(V) = 1, \mu_u(D(A)) = 1 \).
- Recurrence: Sets \(E \subset H \) with \(\mu_u(E) > 0 \) are “recurrent”.
- Asymptotic regularity question: Is \(\mu_u \) supported or carried on a more regular set? On a set where global regularity holds?
Asymptotic regularity

\[A_w = \left\{ \mathbf{u}_0 \in H; \exists t_0 \in \mathbb{R} \text{ and a bounded global solution } \mathbf{u} \text{ with } \mathbf{u}(t_0) = \mathbf{u}_0 \right\} \]

\[A_{\text{reg}}' = \left\{ \mathbf{u}_0 \in H; \exists \delta > 0, t_0 \in \mathbb{R} \text{ and a bounded global solution } \mathbf{u} \text{ with } \mathbf{u}(t_0) = \mathbf{u}_0 \text{ and } \mathbf{u} \text{ regular on } (t_0 - \delta, t_0 + \delta) \right\} \]

\[A_{\text{reg}}^\infty = \left\{ \mathbf{u}_0 \in H; \exists t_0 \in \mathbb{R} \text{ and a bounded global regular solution } \mathbf{u} \text{ with } \mathbf{u}(t_0) = \mathbf{u}_0 \text{ and } \mathbf{u} \text{ unique among bounded global solutions} \right\} \]

- We have \(\mu_{\mathbf{u}}(A_w) = 1 \), where \(A_w = \) weak global attractor

- We have \(\mu_{\mathbf{u}}(A'_{\text{reg}}) > 1/(1 + n) \), for \(n \) large enough (related to the fractal estimate of the set of singularities in time), with \(A'_{\text{reg}} \) open and dense in \(A_w \)

- We look for \(\mu_{\mathbf{u}}(A_{\text{reg}}^\infty) = 1 \)