ON THE LANDAU-LIFSCHITZ DEGREES
OF FREEDOM IN 2-D TURBULENCE

C. Foias¹,², M.S. Jolly¹, O.P. Manley, and R. Rosa³

Abstract. We show that if the Kraichnan theory of fully developed turbulence holds, then
the Landau-Lifschitz degrees of freedom is bounded (up to a logarithmic term) by $G^{1/2}$, where
G is the Grashof number.

The incompressible Navier-Stokes equations (NSE) with periodic boundary conditions
on $[0, L]^2$ can be written as

\begin{equation}
\frac{du}{dt} + \nu Au + B(u, u) = f
\end{equation}

where $A = -\Delta$, $B(u, v) = \mathcal{P}((u \cdot \nabla)v)$ with \mathcal{P} the Helmholtz-Leray projection onto diver-
gence free functions, and f is a body force. We assume that $f = P_{\kappa_0}f$, where

$$P_{\kappa}u = \sum_{\kappa_0 |k| \leq \kappa} \hat{u}_k e^{i\kappa_0 k \cdot x}, \quad \text{for } u(x) = \sum_{k \in \mathbb{Z}^2} \hat{u}_k e^{i\kappa_0 k \cdot x}, \quad \text{with } \kappa_0 = 2\pi/L,$$

and that $\kappa_0 / \kappa_0 \leq C_0$. Critical wave numbers $\kappa_\eta, \kappa_\sigma$, are defined through the generalized
time averages (see [FJMR])

\begin{equation}
\eta = \frac{\nu}{L^2} \langle |A|^2 \rangle, \quad \epsilon = \frac{\nu}{L^2} \langle |A^{1/2}u|^2 \rangle \quad \text{as } \kappa_\eta = \left(\frac{\eta}{L^3} \right)^{1/6} \quad \text{and } \kappa_\sigma = \left(\frac{\eta}{\epsilon} \right)^{1/2},
\end{equation}

where $| \cdot |$ is the L^2-norm.

It is shown in [FJMR] that if the Kraichnan theory of fully developed turbulence [K67]
holds for the NSE, then

\begin{equation}
\left(\frac{\kappa_\eta}{\kappa_0} \right)^2 \leq \left(\frac{1}{2\pi} \right)^{2/3} \left[\left(\frac{\kappa_\sigma}{\kappa_0} \right)^2 - 1 \right]^{-1/3} G^{2/3},
\end{equation}

1991 Mathematics Subject Classification. 35Q30, 76F02.
Key words and phrases. Navier-Stokes, Turbulence.
This work was partially supported by NSF grant number DMS-0074460
where $G = |f|/(\nu \kappa_0)^2$ is the Grashof number. The ratio $(\kappa_\eta/\kappa_0)^2$ is the Landau-Lifschitz asymptotic degrees of freedom, which is shown in [CFM94] to be an upper bound on $\dim F(A)$, the fractal dimension of the global attractor [T] (up to a logarithmic term in (κ_η/κ_0)). We also show in [FJMR] that if the Kraichnan theory holds, then

$$
(1.4) \quad \kappa_\sigma \sim \kappa_\eta \left(\ln \frac{\kappa_\eta}{\kappa_i} \right)^{-1/2},
$$

where κ_i is the lower endpoint of the inertial range. Using (1.4) in (1.3) leads in [FJMR] to the somewhat surprising estimate $(\kappa_\eta/\kappa_0)^2 \lesssim G^{4/7}$ (up to a logarithmic term). This undercuts the previous best estimate $(\kappa_\eta/\kappa_0)^2 \lesssim G^{2/3}$ (up to a logarithmic term), made in [CFM94] without assuming turbulence.

The power $4/7$ does not, however, fully exploit the relations (1.4) and (1.3). In fact, we show in the next few lines that $(\kappa_\eta/\kappa_0)^2 \lesssim G^{1/2}$ (up to a logarithmic term).

Use (1.4) in (1.3) to obtain

$$
\left(\frac{\kappa_\eta}{\kappa_0} \right)^6 \left[\left(\frac{\kappa_\eta}{\kappa_0} \right)^2 \left(\frac{\kappa_0}{\kappa} \right)^2 \left(\ln \frac{\kappa_\eta}{\kappa_i} \right)^{-1} - 1 \right] \lesssim G^2.
$$

Apply the estimate $\kappa_\eta/\kappa_0 \leq G^{1/3}$ from [FMT93] to reach

$$
\left(\frac{\kappa_\eta}{\kappa_0} \right)^8 \left(\frac{\kappa_0}{\kappa} \right)^2 \left(\ln \frac{\kappa_\eta}{\kappa_i} \right)^{-1} \lesssim G^2 + \left(\frac{\kappa_\eta}{\kappa_0} \right)^6 \leq 2G^2,
$$

from which immediately follows

$$
(1.5) \quad \left(\frac{\kappa_\eta}{\kappa_0} \right)^2 \left(\ln \frac{\kappa_\eta}{\kappa_i} \right)^{-1/4} \lesssim \left(\frac{\kappa}{\kappa_0} \right)^{1/2} G^{1/2}.
$$

REFERENCES

\[1\] DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405

E-mail address: msjolly@indiana.edu

\[2\] DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843

\[3\] INSTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, RIO DE JANEIRO, RJ 21945-970 BRAZIL

E-mail address: rrosa@labma.uerj.br